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A fundamental property of solid materials is their stress state. Stress state of a solid or thin film material has profound effects 
on its thermodynamic stability and physical and chemical properties. The classical mechanical stress (M) originates from lat-
tice strain (), following Hooke’s law: M=C, where C is elastic constant matrix. Recently, a new concept of quantum elec-
tronic stress (

QE) is introduced to elucidate the extrinsic electronic effects on the stress state of solids and thin films, which 
follows a quantum analog of classical Hooke’s law: 

QE=(n), where  is the deformation potential of electronic states and 
n is the variation of electron density. Here, we present mathematical derivation of both the classical and quantum Hooke’s 
law from density functional theory. We further discuss the physical origin of quantum electronic stress, arising purely from 
electronic excitation and perturbation in the absence of lattice strain (=0), and its relation to the degeneracy pressure of elec-
trons in solid and their interaction with the lattice. 

stress in the solid, quantum electronic stress, quantum Hooke’s law, density functional theory 

 

Citation:  Hu H, Liu F. Density-functional-theory formulation of classical and quantum Hooke’s law. Sci China Tech Sci, 2014, 57: 692698, doi: 
10.1007/s11431-014-5500-x  

 

 
 
1  Introduction 

Stress state in the solid and thin film is a fundamental prop-
erty that greatly affects their thermodynamic stability and 
physical and chemical properties [1–4]. It have been ex-
ploited in a broad range of applications like making and 
growing new nanostructures [5–8], electromechanical de-
vices [9], mechanochemical sensors [10], and flexible elec-
tronics [11]. Classically, lattice stress in a solid is consid-
ered a mechanical stress (MS, M) induced by any form of 
lattice distortion, such as lattice expansion and compression, 
doping of foreign atoms, or formation of defects (e.g. va-
cancy). Quantitatively, the mechanical stress follows the 
classical Hooke’s law in linear proportional to lattice strain 
() as 

M=C, where C is elastic constant matrix. Recently, 

a new concept of quantum electronic stress (QES, 
QE) is 

introduced to elucidate the extrinsic electronic effects on the 
stress state of solids and thin films, in the absence of lattice 
strain [12]. The QES arises generally from any form of 
electronic excitation and perturbation when the atomic lat-
tice is fixed, such as photo electronic excitation, charge 
doping, and quantum confinement effect. 

We may simply illustrate the difference between MS and 
QES using a one-dimensional (1D) lattice, as shown in Fig-
ure 1. For a 1D lattice under compressive or tensile lattice 
strain () (Figure 1(a)), the atomic lattice deformation en-
ergy can be expressed as E=(1/2)C2L, where C is the 
Young’s modulus here but elastic constants in general and L 
is the length of lattice. By definition, the lattice deformation 
induced mechanical lattice stress can be expressed as 

M= 
(1/L)(dE/d)=C, i.e. the classical Hooke’s law. Now con-
sider an equilibrium lattice without strain (=0), but elec-
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tronically perturbed or excited, for example, an electron is 
kicked out by a photon leaving behind a hole as shown in 
Figure 1(b). This electronic excitation process will redis-
tribute the electron density, and the associated “electronic 
deformation” energy can be expressed as E=N, where  
is the electron chemical potential and N is the change of 
number of electrons. Then the lattice stress induced by the 
electronic deformation, which is called QES, can be ex-
pressed as 

QE=(1/V)(dE/d)=n, where =d/d is the 
deformation potential and n is the change of electron den-
sity. This equation of 

QE=n can be viewed as a quantum 
Hooke’s law, expressing the linear dependence of QES on 
variation of electron density. 

The QES is related to electron degeneracy pressure (EDP) 
of an electron gas. EDP results from the Pauli exclusion 
principle which disallows two electrons from simultane-
ously occupying the same quantum state. When increasing 
the electron density, the emergent repulsive force is mani-
fested as a positive internal pressure, tending to expand the 
volume of the electron gas; in contrast, when decreasing the 
electron density, a negative internal pressure appears tend-
ing to shrink the volume. Although the QES in the solid is 
closely related to the EDP of an electron gas, resulting from 
the same underlying physical mechanism, their dependence 
on the electron density is quite different, due to the additional 
electron-ion interaction (i.e. ionic potential) in the solid.  

In the following, we will first review the dependence of 
EDP on electron density for both free electron gas and in-
teracting homogeneous electron gas in Section 2. Then, we 
will formally derive the classical and quantum Hooke’s law 
for the MS and QES in the solid, respectively, within den-
sity functional theory (DFT) in Section 3. In Section 4, we 
will show calculations of QES induced by charge carrier 
using first-principles DFT method. Lastly in Section 5, we 
will discuss the relationship between QES in a solid and 
EDP of electron gas, and provide a brief summary. 

2  EDP of free and interacting homogeneous 
electron gas 

2.1  EDP of free electron gas 

For a non-interacting free electron gas, the total energy 
contains only the kinetic energy term (assuming zero tem-
perature and ignoring thermal pressure), which can be ex-
pressed as 

  
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where V is the volume of electron gas, me is the electron 
mass,  is the electron density. The EDP can be calculated 
like the normal pressure for ordinary gas as  
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Figure 1  (Color online) Schematic illustration of MS versus QES. (a) 
The MS (

M) induced by applying a compressive lattice strain (). (b) The 
QES (

QE) induced by a hole excited by a photon. Arrows indicate stress 
and force directions. Adopted from ref. [12]. 

The positive pressure means that free electron gas always 
tends to expand. 

2.2  EDP of interacting homogeneous electron gas 

For an interacting electron gas, we need to include the ex-
change energy and correlation energy of electrons. For sim-
plicity, we use local density approximation (LDA), and the 
total energy of a homogeneous electron gas is expressed as 

   ,E V       (3) 

where () is the total energy per electron of a homogene-
ous electron gas with density ; it contains terms of kinetic 
energy, exchange energy and correlation energy: 

 
       .T x c           (4) 

The kinetic energy is the same as that for the free elec-
tron gas (eq. (1)). The exchange energy can be expressed 
analytically as 

  2/32 2/33
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For convenience, we use atomic units in this section. 
Usually for a homogeneous electron gas, another variable 

rs is used instead of  with 

 34 1
π .

3 sr 
  (6) 

Then, the total energy per electron can be expressed as 

    2

1.1049 0.4582
.s c s

ss

r r
rr

     (7) 

In general, there is no analytical expression for c(rs), so 
it is calculated numerically. We use the Vosko-Wilk-Nusair 
interpolation formula to calculate c(rs), which gives very 
good results in the density range we are interested [13]: 
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where ,sx r   2 ,X x x bx c    and 24 .Q c b   

The parameters A=0.0621814, x0=0.10498, b=3.72744, 
c=12.9352 give the best fitting to Ceperley and Alder’s 
quantum Monte Carlo results [14]. 

The EDP of an interacting homogeneous electron gas is 
also calculated numerically using P=dE/dV. Figure 2 shows 
the EDP induced by different energy terms in eq. (4) as well 
as the total EDP. One sees that the kinetic energy always 
induces positive pressure (PT), tending to expand the vol-
ume; while both the exchange and correlation energy induce 
negative pressure (Px and Pc), tending to shrink the volume. 
At very low electron density, the exchange and correlation 
terms dominate (increasing faster with the increasing density); 
at high density, the kinetic term dominates. This gives rise 
to a minimum total EDP, as shown by the inset in Figure 2. 
Without the inclusion of exchange and correlation energy, 
the EDP of a free electron gas is always positive and in-
creases monotonically with the electron density; with the 
inclusion of exchange and correlation energy, it has a min-
imum at a relatively low electron density, and the overall 
magnitude of total pressure is greatly reduced, staying be-
low 1 GPa for a large range of electron density.  

3  Derivation of classical and quantum Hooke’s 
law within DFT 

Within DFT [15], the total energy functional of a solid is 
expressed as 
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where  eE r  


 is the electronic energy functional of 

charge density  r 
, including kinetic energy  kinE r  


 

and electron-electron interaction energy  e eE r   


. 

   ext , mE r R 
 


is the ion-electron interaction energy, 

 I mE R 
 


 is the ion-ion interaction energy, and  mR


 are 

atomic coordinates. We assume  0 r 
 and  0

mR


 are the 

equilibrium ground-state electron density and atomic coor-
dinates, respectively. 

 

Figure 2  (Color online) Degeneracy pressure induced by different energy 
terms and the total pressure vs. electron density. Inset shows the total de-
generacy pressure for an interacting homogeneous electron gas in the low 
density range. 

3.1  Derivation of classical Hooke’s law 

Consider the lattice is under a homogeneous strain {ij}, and 
the ground-state electron density and the atomic coordinates 

becomes  r


 and  mR


. By definition, the stress ten-

sor is expressed as  
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where ER=Eext+EI. Since  r


 is the ground-state elec-

tron density under strain, according to Hohenberg-Kohn 
theorem [15], we have 
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and eq. (10) becomes 
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When applying strain, the transformation of atomic coor-
dinates can be expressed as 

     0 ,m mR I R  
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  (13) 



 Hu H, et al.   Sci China Tech Sci   April (2014) Vol.57 No.4 695 

where  stands for the strain tensor {ij}, I is the rank-two 
identity matrix. Then ER can be expanded with respect to as 
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where i, j, k, l=1 to 3 are the Cartesian axes.  
The MS induced by the strain is then 
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is the four-rank stiffness tensor with 81 variables, which can 
be reduced to 21 independent variables by the inherent lattice 
symmetry. Eq. (16) is the classical Hooke’s law as derived 
from DFT. 

We see from the above derivation that the MS also has 
the electronic contribution, as the ground-state density 
changes from  0 r 

 to  r


 when strain is applied, so 

it also requires quantum mechanical derivation as has been 
done before [16,17]. Such electronic contribution has been 
termed as quantum (mechanical) stress or electronic stress 
before. However, the net outcome of MS still follows the 
classical Hooke’s law, depending explicitly only on the 
atomic coordinates. This is because the effect of ground- 
state electronic structure can be casted into the atomic and 
lattice size effect due to the Hohenberg-Kohn theorem. It is 
why the MS can be modeled by the empirical interatomic 
potentials, which are explicit functions of only the atomic 
coordinates even though the potential depends implicitly on 
the ground-state electronic structure of lattice. Therefore, 
the electronic contribution to MS is different from the QES 
we derive below. 

3.2  Derivation of quantum Hooke’s law 

Consider the electron density of a solid is perturbed from 
the ground state as      *
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The first term in the right of eq. (19) is the stress of 
strain-free solid, which is zero. Therefore eq. (19) is simpli-
fied as 
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where    ext( )er E E r   
 

 is the electron chemical 

potential. At equilibrium, the electron chemical potential in 
a solid is uniform; the second term at the right of eq. (20) 
can be expressed as 
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where N is the total number of electrons. Since N does not 
change with the strain applied, eq. (20) is equal to zero. 
Then eq. (19) is further simplified as 
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where  ij r


 is electron deformation potential, generally 

it varies with the spatial position within a solid.  
For a homogeneous crystalline solid, when the change of 

electron density is induced by external excitation like pho-
toexcitation and the change of total electron number 

 d
V

N r r  
 

 is nonzero and small, we can obtain the 

distribution of  r 
 using the Fukui function defined as 

[18] 
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which is the differential change in the electron density due 

to an infinitesimal change in the number of electrons. The 
subscript v(r) means that the atomic potential does not 
change in the absence of strain. 

For semiconductor or insulator, the Fukui function of  
eq. (23) is ill-defined because the electron added stays at the 
conduction band minimum (CBM), while the electron re-
moved sits at the valence band maximum (VBM). These 
two bands have different properties, so there will be deriva-
tive discontinuity problem. To resolve this problem, two 
one-side derivative Fukui functions are defined: 
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When electrons are added into the solid, the Fukui function 
of eq. (24a) is used; when electrons are removed, eq. (24b) 
should be used. 

Using the Fukui functions, eq. (22) can be transformed as 
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where 
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which are weighted average of  ij r


 with respect to the 

Fukui functions,  is the average change of the electron 
density. When  is positive, use ij

 , and when  is neg-

ative, use ij
 . ij


 

are the electron deformation potentials 

for the CBM(+) and VBM(), respectively. 
Eq. (25) can be viewed as quantum Hooke’s law, in 

analogy to classical Hooke’s law, with 
QE,  and n play-

ing the role of 
M, C and , respectively. However, when an 

electron density redistribution is induced that the total elec-
tron number does not change, for example, quantum con-
finement in nanostructures or electric field effect in piezoe-
lectric materials, the integral form of eq. (22) must be used 
to calculate the QES. 

4  First-principles calculation of QES induced 
by charge carrier 

From the derivation, we can see that the QES is induced by 
the electron density variation *=0+, in the absence of 
strain. It can be effectively viewed as the stress difference 
between the MS at the perturbed or excited electron density 
* and the ground-state density 0. Practically we can calcu-
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late the charge carrier induced QES by applying the original 
Nielsen-Martin formulism at *. This gives a finite value of 
QES even without external strain (note that the MS at the 
ground-state density 0 vanishes at zero strain.) 

Now we demonstrate quantum Hooke’s law by directly 
calculating the QES induced by charging doping in a ho-
mogeneous system, i.e. by adding or removing electrons 
from a solid, using first-principles DFT calculations. We 
choose four systems: Al (metal), Si (elemental semicon-
ductor), GaAs (compound semiconductor) and ZrO2 (insu-
lator). Figure 3 shows the calculated QES as a function of 
added or removed electron density. They all show almost 
perfect linear dependence on density, in agreement with the 
theory of quantum Hooke’s law. Also we see that adding 
electrons induces compressive QES (negative by conven-
tion), while removing electrons (adding holes) induces ten-
sile QES. In plotting Figure 3, the QES value are taken from 
the diagonal term of the stress tensor along principle axes, 
since the stress is isotropic for these cubic lattices. In general, 
electrons or holes may induce anisotropic stress in other 
lattices, for example, a hexagonal lattice of graphite [12]. 

From eq. (25), the slope of 
QE vs.  is the electron de-

formation potential . For metal, due to the electron-hole 
(e-h) symmetry, =EF/is the same for electron and hole. 
Thus, the slope for electrons and holes is same in Figure 3(a), 
and Al=10.49 eV. For semiconductor and insulator, add-
ing electrons reflects the deformation potentials CBM of the 
CBM, while adding holes reflects the deformation potentials 
VBM of the VBM, and they are different because of e-h 
asymmetry, as shown in Figure 3 for Si, GaAs and ZrO2. We 

obtained CBM
Si =8.65, VBM

Si =9.51; CBM
GaAs =9.77, 

VBM
GaAs =7.33; 

2

CBM
ZrO =12.36, 

2

VBM
ZrO =8.87, which are in 

good agreement with previous results [19]. The difference 
between CBM and VBM increases with the increasing band 
gap, in accordance with the increasing e-h asymmetry for 
large gaps.  

5  Discussion and summary 

The QES in a solid is closely related to the EDP of electron 
gas. The EDP of electron gas arises from the Pauli exclu-
sion principle where two electrons cannot simultaneously 
occupy the same quantum state. When increasing the elec-
tron density, the added electrons has to occupy higher en-
ergy levels, thus the electron gas will try to expand to bring 
down the energy levels and reduce the total energy. In a 
solid, although the electrons are confined by the atomic lat-
tice, the added electrons also have to occupy the higher en-
ergy states which will induce an internal positive pressure 
trying to expand the lattice. 

One difference between the QES in a solid and the EDP 
of an electron gas is that EDP is the total pressure generated 
by the electron gas, it is negative at small electron density 
and positive at larger density (see the inset of Figure 2). 
While the QES is the stress difference between the quantum 
MS at the perturbed electron density (*) and the ground- 
state density (0); it is always negative when adding elec-
trons and positive when removing electrons. Another dif-
ference is that in a solid the electrons are also interacting  

 
Figure 3  (Color online) The QES induced by electrons (triangles) and holes (circles) as a function of carrier density in (a) Al, (b) Si, (c) GaAs, and (d) 
ZrO2. Solid lines are linear fits to the data, and the dashed lines are extensions of the solid lines to indicate different slopes for electrons from holes. The 
figure is from ref. [12]. 
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Figure 4  (Color online) Schematic illustration of the origin of QES in a 
solid in relation to the degeneracy pressure of the electrons as well as the 
interaction with ions. 

with ions, so that the QES is a net outcome of the electrons 
and ions as well as their interaction, and it follows quantum 
Hooke’s law to vary linearly with the change of electron 
density; while the EDP of electron gas only involves the 
electronic degree of freedom but has a complex dependence 
on electron density (see Figure 2). The third difference lies 
in the fact the QES in a solid is generally a tensor and ani-
sotropic depending on lattice symmetries, while EDP of 
electron gas is a scalar and isotropic similar to the pressure 
of normal gas. In Figure 4, we schematically illustrate the 
origin of QES in a solid in relation to EDP of an electron gas 
and electrostatic interactions between electrons and ions.  

In summary, we have reviewed a recently introduced 
concept of QES and derivations of classical and quantum 
Hooke’s within DFT [12]. The physical origin of QES in a 
solid is discussed is relation to the EDP of an electron gas. 
The QES and quantum Hooke’s law is believed to be appli-
cable to a broad range of physical phenomena and technical 
applications that couple electronic structure with lattice 
stress [12], such as semiconductor doping and gating effects, 
quantum confinement in nanostructures, particle irradiation 
induced phase transitions, electroelastic and magnetoelastic 
effects, and biological cell deformation due to charging and 
polarization. 
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